Airy Kernel Determinant Solutions to the KdV Equation and Integro-Differential Painlevé Equations
نویسندگان
چکیده
We study a family of unbounded solutions to the Korteweg–de Vries equation which can be constructed as log-derivatives deformed Airy kernel Fredholm determinants, and are connected an integro-differential version second Painlevé equation. The initial data well-defined for $$x>0$$ , but not $$x<0$$ where behave like $$\frac{x}{2t}$$ $$t\rightarrow 0$$ hence would cylindrical provide uniform asymptotics in x ; they involve analogue V A special case our results yields improved estimates tails narrow wedge solution Kardar–Parisi–Zhang
منابع مشابه
On Discrete Painlevé Equations Associated with the Lattice Kdv Systems and the Painlevé Vi Equation
1 Abstract A new integrable nonautonomous nonlinear ordinary difference equation is presented which can be considered to be a discrete analogue of the Painlevé V equation. Its derivation is based on the similarity reduction on the two-dimensional lattice of integrable partial difference equations of KdV type. The new equation which is referred to as GDP (generalised discrete Painlevé equation) ...
متن کاملThe combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations
In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...
متن کاملPositive Solutions of Volterra Integro–differential Equations
We present some sufficient conditions such that Eq. (1) only has solutions with zero points in (0,∞). Moreover, we also obtain some conditions such that Eq. (1) has a positive solution on [0,+∞). The motivation of this work comes from the work of Ladas, Philos and Sficas [5]. They discussed the oscillation behavior of Eq. (1) when P (t, s) = P (t− s) and g(t) = t. They obtained a necessary and ...
متن کاملA new technique for solving Fredholm integro-differential equations using the reproducing kernel method
This paper is concerned with a technique for solving Fredholm integro-dierentialequations in the reproducing kernel Hilbert space. In contrast with the conventionalreproducing kernel method, the Gram-Schmidt process is omitted hereand satisfactory results are obtained. The analytical solution is represented inthe form of series. An iterative method is given to obtain the approximate solution.Th...
متن کاملExplicit multiple singular periodic solutions and singular soliton solutions to KdV equation
Based on some stationary periodic solutions and stationary soliton solutions, one studies the general solution for the relative lax system, and a number of exact solutions to the Korteweg-de Vries (KdV) equation are first constructed by the known Darboux transformation, these solutions include double and triple singular periodic solutions as well as singular soliton solutions whose amplitude d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2021
ISSN: ['0010-3616', '1432-0916']
DOI: https://doi.org/10.1007/s00220-021-04108-9